MEL Engine Series Combustion Chamber & Piston Design

Discussion of MEL engine related topics only.
Post Reply
reijerlincoln
Staff Sergeant
Staff Sergeant
Posts: 158
Joined: Sat 27. Dec 2008, 02:13
Gender: male
Music instruments you're playing: '81 Gibson Les Paul Custom through a Fender Blues Junior!
Location: The Netherlands

MEL Engine Series Combustion Chamber & Piston Design

Post by reijerlincoln » Sat 3. Jan 2009, 12:18

The goal: assembling in one post all the information MEL owners need to have in order to decide why they should buy OEM ‘step’ design pistons (not to be confused with a ‘pop-up’ design) & where they should buy OEM design pistons. I thought I'd start this thread about MEL combustion chamber & piston design by copy/pasting and reorganising from the old MEL engine forum and thelincolnforum.net KULTULZ wrote a lot on the subject on both forums. Having the information in one thread seems worthwhile. I only included those parts vendors that forum members actually bought from and wrote about their (dis)satisfaction.

A request: please correct or add to my first post in your replies by rewriting the relevant paragraph yourself. I'll keep changing this first post accordingly. I´m only a novice enthusiast so I´m likely to misinterpret one important thing and completely forget another crucial thing. I focussed on the more general topic at hand. I hope other members can contribute more specific information according the different years and applications.

A thought: Perhaps Theo could place the final piece as a sticky in the 'MEL Engine Knowledge Base' section. I wanted to post this thread there but I'm not allowed to start a thread there. So I posted it here.


What is the difference with other engine designs? The difference is that the combustion chamber is defined by piston dome design and not the combustion chamber design in the cylinder head itself, as it is in most other designs. Each cylinder features an angle wedge combustion chamber at the top of the cylinder bores. Put differently; the MEL cylinder bore is sliced off at an angle. Therefore when you bolt on flat head surface with valves also flush with the flat surface, what you have is a valve opening into a cylinder bore, rather than into a combustion chamber in the head. The MEL cylinder bore is therefore the combustion chamber. The combustion chambers-in-block are formed by casting the top of each cylinder bank on a ten degree angle to the piston. Since the two surfaces of the combustion chamber (cylinder wall and bottom of head) are precision machined, and the third surface (top of piston) is smoothly cast, closer tolerances are maintained, resulting in better regulation of compression ratio.
10.jpg
10.jpg (8.42 KiB) Viewed 46226 times
11.jpg
11.jpg (31.52 KiB) Viewed 46226 times
The turbulence-top swirls the fuel mixture in a controlled direction at high speed assuring virtually complete combustion for finer performance of the engine. As the piston reaches the top of the compression stroke, the turbulence-top step drives into the narrowing wedge of the combustion chamber. The forced pressure jets the fuel-air mixture at a high velocity across the spark plug electrode, giving optimum combustion (source: 1958 Mercury Maintenance Manual).
12.jpg
12.jpg (9.39 KiB) Viewed 46226 times
Why is replacement piston design so important for the proper operation of this engine design? If you change one of these components by using flat top pistons you have changed the most important thing of this engine. You will get less performance and bad combustion. Flat top pistons are not designed specifically for the unique combustion chamber design of the MEL. Without the proper piston, you will not realize the power and efficiency of the design. Whether one decides to use this replacement piston is entirely his choice, it is important for the user to understand what is being lost. Due to the unique engine design of the MEL with its plain heads and the 10 degrees chamfered block deck the piston dome is the most important and only feature for the combustion chamber design. Simply put, the flat top pistons offered by some parts suppliers will negate the design of the engine, resulting in nothing more than an air pump as the actual combustion chamber is defined by the dome of the piston. The piston step is on the "high" side to force the mixture into the pocket. The cylinder block deck is actually chamfered 10 degrees to complete the chamber configuration. The head surface may be flat or have actual chambers depending on year and design series of the engine). The early heads are flat surfaced; later designs had a small pocket to decrease CR (and slightly different piston crown configurations). The original (featured in late 59) MEL 8.5 to 1 pistons have the necessary wedge/squish area. The special engineered design of the chamber squish the gases to the sparkplug and give a miss detonation free fire with out any ping. Flat top pistons will result in lower compression. If you desire reduced compression (modern fuel has lower octane) with the correct designed piston tops, you need to find a lower compression ratio set as used in the 60/62 430 2V (also 60 383 2V). On a side note; the MEL pistons are specified L or R due to piston pin offset. The straight surfaces of the combustion chamber walls eliminate deposit forming.

In sum; the generic piston dome shape will result in more than just CR loss, it will defeat the original design of the actual combustion chamber. To have this engine type function as designed and properly, the original piston dome design (or slight variant) must be retained or the engine will simply become an air pump.

Generic flat top pistons:
13.jpg
13.jpg (15.96 KiB) Viewed 46226 times
Original OEM replacement pistons are not available unless one finds a NOS set. There is just not enough demand to mass produce them. Correct replacement pistons are available but expensive. This is a WISECO forged piston, recently installed in an EDSEL 410CI E-475 engine.
14.jpg
14.jpg (12.71 KiB) Viewed 46226 times
15.jpg
15.jpg (15.61 KiB) Viewed 46226 times
Owner Ted E. further wrote the following:
“For conventional measurements, I simply summed half the stroke, the rod length, the piston pin location, and the distance (deck clearance) from the top of the piston to the deck as measured at the very top of the bore. This is how I calculated the wrist pin location for the Edsel 410. I'd have to get out the trig formulas to actually calculate the distance from the top of the piston to the actual deck at the center of the bore but that measurement wasn't needed to actually order the pistons. All I needed off the deck was the actual angle measurement so that the dome would be parallel with both the deck and head surface”

“Compression ratio was lowered by simply making the valve reliefs deeper. Ended up with 9.25:1 compression ratio. Block was cut 0.030 and pin height for the pistons was right at 2.000". Calculated deck height at the centre of bore before cutting anything off the decks was 10.482". That's figuring on it having the 90° decks and not the additional 10° that's added on. Final bore size is 4.225". I ended up with the piston at 0.007" in the hole at the top of the bore. Beats me if it's a high or low deck block as the manual I was looking at didn't give any deck height specs in that regard. All I can tell you is that both '58 410 blocks I was working on had very similar deck heights after dry fitting both of them with the same checking assemblies”.

“When dealing with some of the orphan engines, I like to deal with Brian at Wiseco. He's also a MEL aficionado which helped immensely in this particular case as He's quite familar with the quirkiness of the dome design. These pistons cost comparably the same as other custom pistons I've had done and although I don't have the paperwork in front of me, they were considerably less than $1000 for this particular set. Although I had considered a dish in the piston in the spark plug area of the piston, Wiseco's idea on lowering the compression ratio by simply making the valve reliefs deeper was a much simpler way to accomplish the same thing. As with any custom piston, these pistons will not have a part number that will be generic due to the specific dimensions I specified. I supplied the bore size, wrist pin size and location, ring specifications, combustion chamber volumes, etc. I additionally supplied the rod length, stroke, and various measurements with the cut down 383 piston to that Wiseco could double check my figures.”


These are replacement 462 pistons from Egge (which I ordered from Lincoln Land). It's questionable whether these are an exact copy of the OEM 462 piston but they are correct.
16.jpg
16.jpg (17.04 KiB) Viewed 46226 times
17.jpg
17.jpg (17.38 KiB) Viewed 46226 times
Photo of OEM after market piston (photo borrowed from KULTULZ)
18.jpg
18.jpg (50.58 KiB) Viewed 46226 times
Migginsbros gives us warning where not to buy:
“Seems that it is not easy to get pistons for the 430 engine. We own a Mercury Monterey from 59 with 383 engine. We get a matching 430 crank and some old 430 pistons as a sample. At Kanter we ask for the pistons used in the original MEL 10,5 : 1 version. You must be use 4 pistons specially for the right and 4 for the left bank. Due to the notice at the Kanter catalog it seems that they know about the specifications of the 383 and 430 engine from 58-60. We ordered a set of pistons and will be shocked getting 8 flat top pistons. We called them that these pistons can not give us a compression ratio of 10,5:1 It must be a joke that the technical/salesman is shure that they will work and only have a little less compression. We build in both pistons to figure out the combustion camber (which is in block)so we can get the compression ratio of both pistons. The original piston give us a 10,7 : 1 compression ratio. The Kanter pistons give us a 8,3 : 1 compression ratio. That's not that what we want if we rebuild a 430 engine. Hoping for a second chance we ordered a 10,5 : 1 piston kit as a original replacement for our 430 at Mad-Dog-Racing (same as ERW- Parts). But what we get are the same pistons as Kanter shipped us. We have many telephone calls and mailing with them but the sad truth is that they don't understand what went wrong.”
Last edited by reijerlincoln on Mon 25. May 2009, 00:49, edited 3 times in total.

User avatar
KULTULZ
Technical Sergeant
Technical Sergeant
Posts: 241
Joined: Wed 12. May 2010, 10:35
Gender: male

Re: MEL Engine Series Combustion Chamber & Piston Design

Post by KULTULZ » Fri 9. Jan 2009, 02:28

reijerlincoln wrote:

There are replacement 462 pistons from Egge (which I ordered from Lincoln Land). They are not correct OEM design but they did work. According to KULTULZ these are made from BUICK blanks and have a reconfigured dome.
16.jpg
16.jpg (17.04 KiB) Viewed 46226 times
17.jpg
17.jpg (17.38 KiB) Viewed 46226 times
Hey Reijer!

The pistons shown are of the correct configuration. Remember the discussion at LCOC? I said it was odd as previous EGGE pistons have been modified blanks. You have the correct shaped pistons. Whether they are an exact copy of the OEM 460 piston may be questionable but they are correct.

Nice job of presenting MEL Combustion Chamber Theory... :mrgreen:

User avatar
KULTULZ
Technical Sergeant
Technical Sergeant
Posts: 241
Joined: Wed 12. May 2010, 10:35
Gender: male

Re: MEL Engine Series Combustion Chamber & Piston Design

Post by KULTULZ » Fri 9. Jan 2009, 02:50

reijerlincoln wrote:
Original OEM replacement pistons are not available unless one finds a NOS set. There is just not enough demand to mass produce them. Correct replacement pistons are available but expensive. This is a -WISECO- forged piston, recently installed in an EDSEL 410 CI E-475 engine.
14.jpg
14.jpg (12.71 KiB) Viewed 46226 times
15.jpg
15.jpg (15.61 KiB) Viewed 46226 times
Owner Ted E. further wrote the following:
When dealing with some of the orphan engines, I like to deal with Brian at Wiseco. He's also a MEL aficionado which helped immensely in this particular case as He's quite familar with the quirkiness of the dome design. These pistons cost comparably the same as other custom pistons I've had done and although I don't have the paperwork in front of me, they were considerably less than $1000 for this particular set. Although I had considered a dish in the piston in the spark plug area of the piston, Wiseco's idea on lowering the compression ratio by simply making the valve reliefs deeper was a much simpler way to accomplish the same thing. As with any custom piston, these pistons will not have a part number that will be generic due to the specific dimensions I specified. I supplied the bore size, wrist pin size and location, ring specifications, combustion chamber volumes, etc. I additionally supplied the rod length, stroke, and various measurements with the cut down 383 piston to that Wiseco could double check my figures.

Migginsbros gives us warning where not to buy:
Seems that it is not easy to get pistons for the 430 engine. We own a Mercury Monterey from 59 with 383 engine. We get a matching 430 crank and some old 430 pistons as a sample. At Kanter we ask for the pistons used in the original MEL 10,5 : 1 version. You must be use 4 pistons specially for the right and 4 for the left bank. Due to the notice at the Kanter catalog it seems that they know about the specifications of the 383 and 430 engine from 58-60. We ordered a set of pistons and will be shocked getting 8 flat top pistons. We called them that these pistons can not give us a compression ratio of 10,5:1 It must be a joke that the technical/salesman is shure that they will work and only have a little less compression. We build in both pistons to figure out the combustion camber (which is in block)so we can get the compression ratio of both pistons. The original piston give us a 10.7 : 1 compression ratio. The Kanter pistons give us a 8.3 : 1 compression ratio. That's not that what we want if we rebuild a 430 engine. Hoping for a second chance we ordered a 10.5 : 1 piston kit as a original replacement for our 430 at Mad-Dog-Racing (same as ERW- Parts). But what we get are the same pistons as Kanter shipped us. We have many telephone calls and mailing with them but the sad truth is that they don't understand what went wrong.
Below is a notching tool for plug electrode clearance. There is also a similiar tool(s) to flycut the piston for valve clearance(s).
Piston Notching Tool- Plug Electrode.gif
Spark Plug Electrode Notching Tool
Piston Notching Tool- Plug Electrode.gif (14.46 KiB) Viewed 47151 times

reijerlincoln
Staff Sergeant
Staff Sergeant
Posts: 158
Joined: Sat 27. Dec 2008, 02:13
Gender: male
Music instruments you're playing: '81 Gibson Les Paul Custom through a Fender Blues Junior!
Location: The Netherlands

Re: MEL Engine Series Combustion Chamber & Piston Design

Post by reijerlincoln » Mon 12. Jan 2009, 11:56

Thanks for that correction KULTULZ. I'll edit the sentence.

Cheers,
Reijer

reijerlincoln
Staff Sergeant
Staff Sergeant
Posts: 158
Joined: Sat 27. Dec 2008, 02:13
Gender: male
Music instruments you're playing: '81 Gibson Les Paul Custom through a Fender Blues Junior!
Location: The Netherlands

Re: MEL Engine Series Combustion Chamber & Piston Design

Post by reijerlincoln » Wed 9. Sep 2009, 02:19

Between '62 and '63 a few changes were made to the 430 that was used in Lincoln Continentals. Note the difference is piston design:
IMG_33342.jpg

User avatar
Shelby#18
Master Sergeant
Master Sergeant
Posts: 366
Joined: Fri 17. Apr 2009, 14:15
Gender: male
Music instruments you're playing: none

Re: MEL Engine Series Combustion Chamber & Piston Design

Post by Shelby#18 » Fri 18. Sep 2009, 20:30

O.K. gentlemen does this look correct???? These are photo's of the new pistons for a 1959 Mercury 430 cu in.. And the explination...
here are pics of the new piston side by side with the old. They look
pretty close. They said the difference in the step down should make for
slightly more compression than original.
Your thoughts?
LAFOURTUNE017.jpg
LAFOURTUNE027.jpg
LAFOURTUNE028.jpg

User avatar
59lincolnrag
Air Education & Training Command
Air Education & Training Command
Posts: 217
Joined: Wed 24. Dec 2008, 06:03
Gender: male
Music instruments you're playing: Acoustic Guitar ... when I was young
Location: South Jersey 08062

Re: MEL Engine Series Combustion Chamber & Piston Design

Post by 59lincolnrag » Fri 2. Oct 2009, 16:04

Wow ...Those parts are like Jewelry.........
2002 Lincoln Blackwood
1959 Lincoln Continental Coupe blk on blk
430 Tri-Power Super Marauder
1959 Lincoln Continental Convertible wht on wht
2006 Lincoln Town Car

reijerlincoln
Staff Sergeant
Staff Sergeant
Posts: 158
Joined: Sat 27. Dec 2008, 02:13
Gender: male
Music instruments you're playing: '81 Gibson Les Paul Custom through a Fender Blues Junior!
Location: The Netherlands

Re: MEL Engine Series Combustion Chamber & Piston Design

Post by reijerlincoln » Fri 2. Oct 2009, 23:21

Shelby#18 wrote:O.K. gentlemen does this look correct???? These are photo's of the new pistons for a 1959 Mercury 430 cu in.
They look correct to my hobbyist eyes. You'll know for certaint when your mechanic gets his hands on them...

They are from Wiseco?

User avatar
Shelby#18
Master Sergeant
Master Sergeant
Posts: 366
Joined: Fri 17. Apr 2009, 14:15
Gender: male
Music instruments you're playing: none

Re: MEL Engine Series Combustion Chamber & Piston Design

Post by Shelby#18 » Sat 3. Oct 2009, 09:06

They are from Wiseco?
Yes, they are. :D The engine should be done soon. Then it will be dyno'd, before installing in the car. I'll post those results once obtained.

WerbyFord
Airman basic
Posts: 15
Joined: Sat 27. Dec 2008, 20:21
Gender: male
Music instruments you're playing: Clarinet and Sax but not lately
Location: Northern California

Re: MEL Engine Series Combustion Chamber & Piston Design

Post by WerbyFord » Sat 10. Oct 2009, 10:15

Shelby18,
Can you post the specs on your 430 build for the dyno so I can try to make a prediction up front?
Dyno tests on MEL are SO rare I am anxious to compare to some real data.
Carb[s]
Intake
Heads - valves - porting
Exhaust (which manifolds, or headers & pri diameter)
Pistons (ok saw em)
Compression
Cam (pref duration at .050" lobe, lobe sep angle and advance, and lift but any known info will do)

This would be totally awesome info thanks

Post Reply

Return to “MEL Engine General Discussion”

Who is online

Users browsing this forum: No registered users and 8 guests